Antifreeze Coolant

Welding Guns of Australia Pty Ltd

Chemwatch: 5665-27 Version No: 2.1

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **12/03/2024**Print Date: **04/06/2024**L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	Antifreeze Coolant	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Antifreeze coolant. Use according to manufacturer's directions.
--------------------------	---

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Welding Guns of Australia Pty Ltd	
Address	12 Christina Road Villawood NSW 2163 Australia	
Telephone	2 9780 4200	
Fax	+61 2 9780 4244	
Website	www.unimig.com.au	
Email	orders@unimig.com.au	

Emergency telephone number

Association / Organisation	Welding Guns of Australia Pty Ltd
Emergency telephone numbers	+61 2 9780 4200
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	S6	
Classification ^[1]	Acute Toxicity (Oral) Category 4, Aspiration Hazard Category 1, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

Chemwatch: 5665-27 Page 2 of 16 Version No: 2.1

Antifreeze Coolant

Issue Date: 12/03/2024 Print Date: 04/06/2024

Signal word	Danger
Hazard statement(s)	
⊔ 302	Harmful if swallowed

H302	Harmful if swallowed.	
H304	be fatal if swallowed and enters airways.	
H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H335	May cause respiratory irritation.	
H336	May cause drowsiness or dizziness.	
H373	May cause damage to organs through prolonged or repeated exposure.	

Precautionary statement(s) Prevention

P260	Do not breathe mist/vapours/spray.	
P271	Use only outdoors or in a well-ventilated area.	
P264	Wash all exposed external body areas thoroughly after handling.	
P270	Do not eat, drink or smoke when using this product.	
P280	Wear protective gloves, protective clothing, eye protection and face protection.	

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.	
P331	Do NOT induce vomiting. If more than 15 mins from Doctor, INDUCE VOMITING (if conscious).	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	
P330	Rinse mouth.	
P332+P313	If skin irritation occurs: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233	Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

	•
P501	Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
107-21-1	45	ethylene glycol
Not Available	4	additive, proprietary
7732-18-5	51	water
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

Chemwatch: 5665-27 Page 3 of 16 Version No: 2.1

Antifreeze Coolant

Issue Date: 12/03/2024 Print Date: 04/06/2024

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider:

- Foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.

Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 The material is not readily combustible under normal conditions. However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. Heat may cause expansion or decomposition with violent rupture of containers.

Chemwatch: 5665-27 Page 4 of 16 Issue Date: 12/03/2024 Print Date: 04/06/2024 Version No: 2.1

Antifreeze Coolant

	 Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke.
	Decomposes on heating and produces toxic fumes of:
	carbon dioxide (CO2)
	other pyrolysis products typical of burning organic material.
	May emit poisonous fumes.
	May emit corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

	<u> </u>
Minor Spills	Slippery when spilt. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Slippery when spilt. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Antifreeze Coolant

Issue Date: **12/03/2024**Print Date: **04/06/2024**

- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ DO NOT use aluminium or galvanised containers
- Polyethylene or polypropylene container.
- ▶ Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Alcohols

- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen

Storage incompatibility

- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment
- Avoid strong acids, bases.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethylene glycol	Ethylene glycol (vapour)	20 ppm / 52 mg/m3	104 mg/m3 / 40 ppm	Not Available	Not Available
Australia Exposure Standards	ethylene glycol	Ethylene glycol (particulate)	10 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
ethylene glycol	30 ppm	150 ppm	900 ppm

Ingredient	Original IDLH	Revised IDLH
ethylene glycol	Not Available	Not Available
water	Not Available	Not Available

MATERIAL DATA

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50- 100 f/min.)

Chemwatch: 5665-27 Page 6 of 16 Version No: 2.1

Antifreeze Coolant

Issue Date: 12/03/2024 Print Date: 04/06/2024

aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100- 200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200- 500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500- 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective

equipment

- ▶ Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- ▶ Chemical goggles. Whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. [AS/NZS 1337.1, EN166 or national equivalent]
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.

▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

Hands/feet protection

Eye and face protection

▶ Elbow length PVC gloves

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

Chemwatch: 5665-27 Page 7 of 16 Issue Date: 12/03/2024
Version No: 2.1 Print Date: 04/06/2024

Antifreeze Coolant

	It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Antifreeze Coolant

Material	СРІ
NEOPRENE	A
BUTYL	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
TEFLON	С
VITON	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Ansell Glove Selection

Glove — In order of recommendation
AlphaTec 02-100
AlphaTec® Solvex® 37-185
AlphaTec® 58-008
TouchNTuff® 83-500
MICROFLEX® 93-260
AlphaTec® 38-612

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

 $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds(below \ 65 \ degC)$

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Antifreeze Coolant

Issue Date: 12/03/2024 Print Date: 04/06/2024

AlphaTec® 58-530B	
AlphaTec® 58-530W	
AlphaTec® 58-735	
AlphaTec® 79-700	

The suggested gloves for use should be confirmed with the glove supplier.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Green liquid; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	1.03
Odour	Not Available	Partition coefficient n- octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	110	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Chemwatch: 5665-27 Page 9 of 16 Issue Date: 12/03/2024 Version No: 2.1 Print Date: 04/06/2024

Antifreeze Coolant

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severe damage to the health of the individual. Relatively small amounts absorbed through the lungs may prove fatal. Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

The toxic effects of glycols (dihydric alcohols), following ingestion are similar to those of alcohol, with depression of the central nervous system (CNS), nausea, vomiting and degenerative changes in liver and kidney.

Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased.

Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema.

Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent.

for ethylene glycol:

Ingestion symptoms include respiratory failure, central nervous depression, cardiovascular collapse, pulmonary oedema, acute kidney failure, and even brain damage. Ingestion of 100 ml has caused death. (ChemInfo)

Toxicity of ethylene glycol to human (KB) cell cultures has been reported as less than that of ethanol. (NIOSHTIC)

Ethylene glycol produces a three-stage response with the severity of each stage dependent on the amount of ingestion. Hepatic damage is usually minimal. Central nervous system depression characterise the first 12 hours post ingestion.

Transient exhilaration occurs without the odour of ethanol.

Gastrointestinal complaints include nausea and vomiting. Acidosis, coma, convulsions and myoclonic jerks may also be evident. The optic fundus is usually normal although the presence of papilloedema may confuse the presentation with that produced by methanol. Nystagmus and opthalmoplegias may appear.

Cardiopulmonary effects are seen 12-24 hours post-ingestion and are characterised by tachycardia, tachypnea, and mild hypertension. Congestive heart failure and circulatory collapse may occur in severe intoxications.

Renal effects are seen 24-72 hours post-ingestion and are characterised by oliguria, flank pain, acute tubular necrosis, renal failure, and rarely, bone marrow arrest. Renal damage may be permanent.

Toxic effects of ethylene glycol are similar to those produced by ethanol but ethylene glycol produces toxic metabolites.

Metabolic acidosis and anion gap result primarily from glycolic acid formation and some lactic

acid formation. The citric acid cycle is inhibited as a result of reduced NAD/NADH ratios and to a limited extent, the formation of oxalic acid, and to metabolic acidosis. Oxalate formation produces myocardial depression and acute tubular necrosis.

Glycoaldehyde, glycolic acid and glyoxylic acid may contribute to CNS depression and may also produce renal toxicity by producing renal oedema. Hypocalcaemia may result from chelation by oxalate. Oxalic acid, glycoxalic acid, glycoxaldehyde and formic acid appear to form to only a limited degree during intoxication.

Oral administration to pregnant mice and rats produced birth defects amongst the off-spring.

Skin Contact

Ingestion

The material may accentuate any pre-existing dermatitis condition

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man.

Continued...

Chemwatch: **5665-27** Page **10** of **16** Issue Date: **12/03/2024**Version No: **2.1** Print Date: **04/06/2024**

Antifreeze Coolant

The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of Eye experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following subacute (28 day) or chronic (two-year) toxicity tests. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence to provide a presumption that human exposure to the material may result in impaired fertility on the basis of: some evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other Chronic toxic effects. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Human volunteers exposed to ethylene glycol, 20 to 22 hours/day at mean daily concentrations ranging form 1.4 to 27 ppm for about 4 weeks complained of throat irritation, mild headache and low backache. Complaints became marked when the concentration in the exposure chamber was raised above 56 mg/m3 for part of the day. The most common complaint was irritation of the upper respiratory tract. Concentrations above 80 ppm were intolerable with a burning sensation along the trachea and a burning cough. Excessively exposed workers have reported drowsiness. Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Antifreeze Coolant	TOXICITY	IRRITATION
	Not Available	Not Available
	TOXICITY	IRRITATION
	dermal (mouse) LD50: >3500 mg/kg ^[1]	Eye (rabbit): 100 mg/1h - mild
ethylene glycol	Oral (Rat) LD50: >2000 mg/kg ^[2]	Eye (rabbit): 12 mg/m3/3D
		Eye (rabbit): 1440mg/6h-moderate
		Eye (rabbit): 500 mg/24h - mild
		Eye: no adverse effect observed (not irritating) ^[1]
		Skin (rabbit): 555 mg(open)-mild
		Skin: no adverse effect observed (not irritating) ^[1]
water	TOXICITY	IRRITATION
	Oral (Rat) LD50: >90000 mg/kg ^[2]	Not Available

ETHYLENE GLYCOL

[Estimated Lethal Dose (human) 100 ml; RTECS quoted by Orica] Substance is reproductive effector in rats (birth defects).

Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Mutagenic to rat cells. For ethylene glycol:

Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol.

Chemwatch: 5665-27 Page 11 of 16 Issue Date: 12/03/2024 Version No: 2.1 Print Date: 04/06/2024

Antifreeze Coolant

dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glyoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glyoxylate; glyoxylate may be further metabolised to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate CO2, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO2, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested.

Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases).

Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12- 24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol.

Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown.

Gastrointestinal Effects. Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition.

Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia.

Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol.

Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria, and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy.

Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate).

Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion. Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months. Reproductive Effects: Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in

three multi-generation studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in destational duration.

Developmental Effects: The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embyrotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight. Cancer: No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol. Genotoxic Effects: Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available in vivo and in vitro laboratory studies provide consistently negative genotoxicity results for ethylene glycol.

No significant acute toxicological data identified in literature search.

Page **12** of **16**

Antifreeze Coolant

Issue Date: **12/03/2024**Print Date: **04/06/2024**

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	~

Legend:

🗶 – Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Antifreeze Coolant	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	8050mg/L	4
	EC50	48h	Crustacea	>100mg/l	2
ethylene glycol	EC50(ECx)	Not Available	Algae or other aquatic plants	6500- 7500mg/l	1
	EC50	96h	Algae or other aquatic plants	6500- 13000mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
water	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	4. US EPA, Ed	· ·	e ECHA Registered Substances - Ecotoxicologi lata 5. ECETOC Aquatic Hazard Assessment D centration Data 8. Vendor Data	•	

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
ethylene glycol	LOW (Half-life = 24 days)	LOW (Half-life = 3.46 days)
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
ethylene glycol	LOW (BCF = 200)

Mobility in soil

Ingredient	Mobility	
ethylene glycol	HIGH (Log KOC = 1)	

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

• If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

Chemwatch: **5665-27**Page **13** of **16**Issue Date: **12/03/2024**Version No: **2.1**Print Date: **04/06/2024**Print Date: **04/06/2024**

Antifreeze Coolant

- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group		
ethylene glycol	Not Available		
water	Not Available		

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type		
ethylene glycol	Not Available		
water	Not Available		

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

ethylene glycol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Additional Regulatory Information

Not Applicable

National Inventory Status

Issue Date: 12/03/2024 Print Date: 04/06/2024 **Antifreeze Coolant**

National Inventory	Status				
Australia - AIIC / Australia Non-Industrial Use	Yes				
Canada - DSL	Yes				
Canada - NDSL	No (ethylene glycol; water)				
China - IECSC	Yes				
Europe - EINEC / ELINCS / NLP	Yes				
Japan - ENCS	Yes				
Korea - KECI	Yes				
New Zealand - NZIoC	Yes				
Philippines - PICCS	Yes				
USA - TSCA	Yes				
Taiwan - TCSI	Yes				
Mexico - INSQ	Yes				
Vietnam - NCI	Yes				
Russia - FBEPH	Yes				
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.				

SECTION 16 Other information

Revision Date	12/03/2024
Initial Date	12/03/2024

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	12/03/2024	Toxicological information - Acute Health (eye), Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Toxicological information - Chronic Health, Hazards identification - Classification, First Aid measures - First Aid (swallowed)

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ▶ ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- ▶ OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ▶ TLV: Threshold Limit Value
- ▶ LOD: Limit Of Detection
- ▶ OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- ▶ BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level

Page **15** of **16** Issue Date: 12/03/2024 Chemwatch: 5665-27 Version No: 2.1 Print Date: 04/06/2024

Antifreeze Coolant

- ▶ PNEC: Predicted no-effect concentration
- AIIC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ▶ NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ▶ NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ▶ TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Page **16** of **16**

Antifreeze Coolant

Issue Date: **12/03/2024**Print Date: **04/06/2024**